References
- [1]
- A. Goeke and S. Walcher. Quasi-Steady State: Searching for and Utilizing Small Parameters. In: Recent Trends in Dynamical Systems, Vol. 35, edited by A. Johann, H.-P. Kruse, F. Rupp and S. Schmitz (Springer Basel, 2013); pp. 153–178.
- [2]
- A. Goeke and S. Walcher. A Constructive Approach to Quasi-Steady State Reductions. Journal of Mathematical Chemistry 52, 2596–2626 (2014).
- [3]
- A. Goeke, S. Walcher and E. Zerz. Determining "Small Parameters" for Quasi-Steady State. Journal of Differential Equations 259, 1149–1180 (2015).
- [4]
- J. Apelt and V. Liebscher. Tikhonov-Fenichel Reductions and Their Application to a Novel Modelling Approach for Mutualism. Theoretical Population Biology, 16–35 (2025).
- [5]
- A. N. Tikhonov. Systems of differential equations containing small parameters in the derivatives. Matematicheskii sbornik 73, 575–586 (1952).
- [6]
- N. Fenichel. Geometric Singular Perturbation Theory for Ordinary Differential Equations. Journal of Differential Equations 31, 53–98 (1979).
- [7]
- F. Verhulst. Singular Perturbation Methods for Slow–Fast Dynamics. Nonlinear Dynamics 50, 747–753 (2007).
- [8]
- N. Kruff, C. Lax, V. Liebscher and S. Walcher. The Rosenzweig–MacArthur System via Reduction of an Individual Based Model. Journal of Mathematical Biology 78, 413–439 (2019).